Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Genet ; 280-281: 1-5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056049

RESUMO

BACKGROUND: Only rare cases of acute myeloid leukemia (AML) have been shown to harbor a t(8;11)(p11.2;p15.4). This translocation is believed to involve the fusion of NSD3 or FGFR1 with NUP98; however, apart from targeted mRNA quantitative PCR analysis, no molecular approaches have been utilized to define the chimeric fusions present in these rare cases. CASE PRESENTATION: Here we present the case of a 51-year-old female with AML with myelodysplastic-related morphologic changes, 13q deletion and t(8;11), where initial fluorescence in situ hybridization (FISH) assays were consistent with the presence of NUP98 and FGFR1 rearrangements, and suggestive of NUP98/FGFR1 fusion. Using a streamlined clinical whole-genome sequencing approach, we resolved the breakpoints of this translocation to intron 4 of NSD3 and intron 12 of NUP98, indicating NUP98/NSD3 rearrangement as the likely underlying aberration. Furthermore, our approach identified small variants in WT1 and STAG2, as well as an interstitial deletion on the short arm of chromosome 12, which were cryptic in G-banded chromosomes. CONCLUSIONS: NUP98 fusions in acute leukemia are predictive of poor prognosis. The associated fusion partner and the presence of co-occurring mutations, such as WT1, further refine this prognosis with potential clinical implications. Using a clinical whole-genome sequencing analysis, we resolved t(8;11) breakpoints to NSD3 and NUP98, ruling out the involvement of FGFR1 suggested by FISH while also identifying multiple chromosomal and sequence level aberrations.


Assuntos
Leucemia Mieloide Aguda , Feminino , Humanos , Pessoa de Meia-Idade , Hibridização in Situ Fluorescente , Sequência de Bases , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética
2.
Open Forum Infect Dis ; 10(11): ofad518, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37953814

RESUMO

Background: Despite improvements in prevention and treatment, severe coronavirus disease 2019 (COVID-19) is associated with high mortality. Phosphoinositide 3-kinase (PI3K) pathways contribute to cytokine and cell-mediated lung inflammation. We conducted a randomized, placebo-controlled, double-blind pilot trial to determine the feasibility, safety, and preliminary activity of duvelisib, a PI3Kδγ inhibitor, for the treatment of COVID-19 critical illness. Methods: We enrolled adults aged ≥18 years with a primary diagnosis of COVID-19 with hypoxic respiratory failure, shock, and/or new cardiac disease, without improvement after at least 48 hours of corticosteroid. Participants received duvelisib (25 mg) or placebo for up to 10 days. Participants had daily semi-quantitative viral load measurements performed. Dose modifications were protocol driven due to adverse events (AEs) or logarithmic change in viral load. The primary endpoint was 28-day overall survival (OS). Secondary endpoints included hospital and intensive care unit length of stay, 60-day OS, and duration of critical care interventions. Safety endpoints included viral kinetics and AEs. Exploratory endpoints included serial cytokine measurements and cytometric analysis. Results: Fifteen patients were treated in the duvelisib cohort, and 13 in the placebo cohort. OS at 28 days was 67% (95% confidence interval [CI], 38%-88%) compared to 62% (95% CI, 32%-86%) for placebo (P = .544). Sixty-day OS was 60% versus 46%, respectively (hazard ratio, 0.66 [95% CI, .22-1.96]; P = .454). Other secondary outcomes were comparable. Duvelisib was associated with lower inflammatory cytokines. Conclusions: In this pilot study, duvelisib did not significantly improve 28-day OS compared to placebo for severe COVID-19. Duvelisib appeared safe in this critically ill population and was associated with reduction in cytokines implicated in COVID-19 and acute respiratory distress syndrome, supporting further investigation. Clinical Trials Registration: NCT04372602.

3.
Int J Med Sci ; 16(2): 302-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745811

RESUMO

Aim: This study aimed to evaluate the imbalance of erythropoiesis and iron metabolism in patients with thalassemia. Methods: 192 patients with non-transfusion-dependent thalassemia (NTDT), 94 patients with transfusion-dependent thalassemia (TDT) and 101 healthy controls were recruited between June 2013 and December 2016 in the Hematology Department, the First Affiliated Hospital of Guangxi Medical University. The groups were compared in terms of levels of erythropoiesis biomarkers [growth differentiation factor 15 (GDF15), erythropoietin (EPO) and soluble transferrin receptor (sTfR)] and of iron overload biomarkers [serum ferritin (SF), liver iron concentration (LIC) and cardiac T2*] and hepcidin. Results: The levels of GDF15, EPO, sTfR, LIC and SF were significantly higher in patients with thalassemia. The levels of GDF15 and EPO were significantly higher in patients with TDT compared to NTDT. Those with iron overload had higher EPO, GDF15, SF and sTfR levels compared with non-iron overload patients. Hepcidin levels and ratios of hepcidin to erythropoietic activity and to iron biomarker levels were lower in patients with ß-thalassemia intermedia or hemoglobin (Hb) E/ß-thalassemia than in patients with HbH disease. The hepcidin levels were correlated negatively with the levels of EPO, GDF15 and sTfR in patients with NTDT and TDT, but correlated positively with SF and Hb levels only in patients with TDT. Conclusions: Patients with thalassemia showed iron overload, reduced hepcidin levels, and a greater extent of ineffective erythropoiesis. The hepcidin levels were more strongly related to ineffective erythropoiesis compared with iron overload. The imbalance between erythropoiesis and iron metabolism differed across different thalassemia types.


Assuntos
Eritropoese , Talassemia/sangue , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Eritropoetina/sangue , Feminino , Ferritinas/sangue , Fator 15 de Diferenciação de Crescimento/sangue , Coração/diagnóstico por imagem , Hepcidinas/sangue , Humanos , Lactente , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Receptores da Transferrina/sangue , Talassemia/diagnóstico por imagem , Adulto Jovem
4.
Cell Signal ; 50: 72-79, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29964149

RESUMO

Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.


Assuntos
Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HEK293 , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Blood ; 127(15): 1912-22, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26764354

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric mixed myelodysplastic/myeloproliferative neoplasm (MDS/MPN). JMML leukemogenesis is linked to a hyperactivated RAS pathway, with driver mutations in the KRAS, NRAS, NF1, PTPN11, or CBL genes. Previous murine models demonstrated how those genes contributed to the selective hypersensitivity of JMML cells to granulocyte macrophage-colony-stimulating factor (GM-CSF), a unifying characteristic in the disease. However, it is unclear what causes the early death in children with JMML, because transformation to acute leukemia is rare. Here, we demonstrate that loss of Pten (phosphatase and tensin homolog) protein at postnatal day 8 in mice harboring Nf1 haploinsufficiency results in an aggressive MPN with death at a murine prepubertal age of 20 to 35 days (equivalent to an early juvenile age in JMML patients). The death in the mice was due to organ infiltration with monocytes/macrophages. There were elevated activities of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in cells at physiological concentrations of GM-CSF. These were more pronounced in mice with Nf1 haploinsufficiency than in littermates with wild-type Nf1,but this model is insufficient to cause cells to be GM-CSF hypersensitive. This new model represents a murine MPN model with features of a pediatric unclassifiable mixed MDS/MPN and mimics many clinical manifestations of JMML in terms of age of onset, aggressiveness, and organ infiltration with monocytes/macrophages. Our data suggest that the timing of the loss of PTEN protein plays a critical role in determining the disease severity in myeloid malignancies. This model may be useful for studying the pathogenesis of pediatric diseases with alterations in the Ras pathway.


Assuntos
Transtornos Mieloproliferativos/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Transplante de Medula Óssea , Movimento Celular , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Transtornos Mieloproliferativos/metabolismo , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Proteínas ras/metabolismo
7.
Cancer Genet ; 208(3): 96-100, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25800664

RESUMO

The role of MYC and EZH2 in acute myeloid leukemia (AML) pathogenesis is poorly understood. Herein we present a case of AML with MYC amplification in marker chromosomes and a microdeletion of chromosome 7 below cytogenetic resolution. The karyotype of the patient's bone marrow aspirate showed three to five marker chromosomes in all dividing cells without other structural or numerical chromosomal abnormalities. Analysis by fluorescence in situ hybridization (FISH) with a probe specific for the human MYC gene revealed amplification of the oncogene localized to the marker chromosomes. Using whole genome single nucleotide polymorphism (SNP) microarray analysis, an approximately 4.4 Mb amplicon containing the MYC gene was identified with an estimated amplification of about 30 copies per leukemic cell and, thus, an average of about 8 copies per marker chromosome. A 6.4 Mb hemizygous microdeletion of chromosome 7 within band q36.1 was also found by SNP microarray analysis in a cellular-equivalent dosage of 50%. The microdeletion spans multiple genes, including EZH2, a gene with well-known cancer association. No mutation was found in the remaining EZH2 allele by next generation gene sequencing. The combination of MYC amplification and EZH2 deletion, which has not been described previously in AML, may suggest a synergistic role of the two oncogenes in the pathogenesis of the patient's acute leukemia.


Assuntos
Amplificação de Genes , Deleção de Genes , Genes myc , Leucemia Mieloide Aguda/genética , Complexo Repressor Polycomb 2/genética , Idoso , Idoso de 80 Anos ou mais , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/etiologia , Masculino , Polimorfismo de Nucleotídeo Único
9.
Fed Pract ; 32(Suppl 7): 41S-46S, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30766129

RESUMO

An understanding of the disease pathogenesis has led to the discovery of therapuetic agents that target human herpesvirus-8 replication, CD20, and IL-6 and IL-6R antibodies.

10.
Fed Pract ; 32(Suppl 7): 49S-56S, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30766130

RESUMO

Two- and 3-drug treatment regimens and autologous stem cell transplants provide opportunities for longer term disease remission, though most patients will still develop relapsed multiple myeloma.

11.
Fed Pract ; 32(Suppl 7): 64S-69S, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30766131

RESUMO

Cancer organizations have developed guides and tools to help build cancer survivorship programs and survivorship care plans.

12.
Clin Case Rep ; 2(6): 265-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25548628

RESUMO

KEY CLINICAL MESSAGE: Gene panel sequencing in a CMML patient without any detectable genetic abnormality by conventional genetic studies identified four concurrent somatic mutations in three genes. Gene panel mutation analysis is a rapidly emerging clinical tool to demonstrate the clonality in hematologic malignancies, and to identify the potential targets for therapy.

13.
J Clin Invest ; 121(4): 1445-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21436584

RESUMO

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). It is characterized by the t(15;17)(q22;q11.2) chromosomal translocation that creates the promyelocytic leukemia-retinoic acid receptor α (PML-RARA) fusion oncogene. Although this fusion oncogene is known to initiate APL in mice, other cooperating mutations, as yet ill defined, are important for disease pathogenesis. To identify these, we used a mouse model of APL, whereby PML-RARA expressed in myeloid cells leads to a myeloproliferative disease that ultimately evolves into APL. Sequencing of a mouse APL genome revealed 3 somatic, nonsynonymous mutations relevant to APL pathogenesis, of which 1 (Jak1 V657F) was found to be recurrent in other affected mice. This mutation was identical to the JAK1 V658F mutation previously found in human APL and acute lymphoblastic leukemia samples. Further analysis showed that JAK1 V658F cooperated in vivo with PML-RARA, causing a rapidly fatal leukemia in mice. We also discovered a somatic 150-kb deletion involving the lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) gene, in the mouse APL genome. Similar deletions were observed in 3 out of 14 additional mouse APL samples and 1 out of 150 human AML samples. In conclusion, whole genome sequencing of mouse cancer genomes can provide an unbiased and comprehensive approach for discovering functionally relevant mutations that are also present in human leukemias.


Assuntos
Leucemia Promielocítica Aguda/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , DNA de Neoplasias/genética , Progressão da Doença , Humanos , Janus Quinase 1/genética , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Experimental/genética , Camundongos , Camundongos da Linhagem 129 , Dados de Sequência Molecular , Mutação , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Homologia de Sequência de Aminoácidos
14.
Circ Res ; 107(9): 1083-93, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20847314

RESUMO

RATIONALE: The mobilization of bone marrow (BM) progenitor cells (PCs) is largely governed by interactions between stromal cell-derived factor (SDF)-1 and CXC chemokine receptor (CXCR)4. Ischemic injury disrupts the SDF-1-CXCR4 interaction and releases BM PCs into the peripheral circulation, where the mobilized cells are recruited to the injured tissue and contribute to vessel growth. BM PCs can also be mobilized by the pharmacological CXCR4 antagonist AMD3100, but the other components of the SDF-1-CXCR4 signaling pathway are largely unknown. c-kit, a membrane-bound tyrosine kinase and the receptor for stem cell factor, has also been shown to play a critical role in BM PC mobilization and ischemic tissue repair. OBJECTIVE: To investigate the functional interaction between SDF-1-CXCR4 signaling and c-kit activity in BM PC mobilization. METHODS AND RESULTS: AMD3100 administration failed to mobilize BM PCs in mice defective in c-kit kinase activity or in mice transplanted with BM cells that expressed a constitutively active c-kit mutant. Furthermore, BM levels of phosphorylated (phospho)-c-kit declined after AMD3100 administration and after CXCR4 deletion. In cells adhering to culture plates coated with vascular cell adhesion molecule 1, SDF-1 and stem cell factor increased phospho-c-kit levels, and AMD3100 treatment suppressed SDF-1-induced, but not SCF-induced, c-kit phosphorylation. SDF-1-induced c-kit phosphorylation also required the activation of Src nonreceptor tyrosine kinase: pretreatment of cells with a selective Src inhibitor blocked both c-kit phosphorylation and the interaction between c-kit and phospho-Src. CONCLUSIONS: These findings indicate that the regulation of BM PC trafficking by SDF-1 and CXCR4 is dependent on Src-mediated c-kit phosphorylation.


Assuntos
Células da Medula Óssea/fisiologia , Movimento Celular/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores CXCR4/fisiologia , Células-Tronco/fisiologia , Animais , Benzilaminas , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Linhagem Celular , Movimento Celular/genética , Quimiocina CXCL12/fisiologia , Ciclamos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Compostos Heterocíclicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-kit/deficiência , Proteínas Proto-Oncogênicas c-kit/genética , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Quinases da Família src/fisiologia
15.
J Clin Invest ; 120(6): 2109-18, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20484815

RESUMO

Antiapoptotic BCL2 family members have been implicated in the pathogenesis of acute myelogenous leukemia (AML), but the functional significance and relative importance of individual proteins (e.g., BCL2, BCL-XL, and myeloid cell leukemia 1 [MCL1]) remain poorly understood. Here, we examined the expression of BCL2, BCL-XL, and MCL1 in primary human hematopoietic subsets and leukemic blasts from AML patients and found that MCL1 transcripts were consistently expressed at high levels in all samples tested. Consistent with this, Mcl1 protein was also highly expressed in myeloid leukemic blasts in a mouse Myc-induced model of AML. We used this model to test the hypothesis that Mcl1 facilitates AML development by allowing myeloid progenitor cells to evade Myc-induced cell death. Indeed, activation of Myc for 7 days in vivo substantially increased myeloid lineage cell numbers, whereas hematopoietic stem, progenitor, and B-lineage cells were depleted. Furthermore, Mcl1 haploinsufficiency abrogated AML development. In addition, deletion of a single allele of Mcl1 from fully transformed AML cells substantially prolonged the survival of transplanted mice. Conversely, the rapid lethality of disease was restored by coexpression of Bcl2 and Myc in Mcl1-haploinsufficient cells. Together, these data demonstrate a critical and dose-dependent role for Mcl1 in AML pathogenesis in mice and suggest that MCL1 may be a promising therapeutic target in patients with de novo AML.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Genes bcl-2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína de Sequência 1 de Leucemia de Células Mieloides
16.
Blood ; 111(9): 4797-808, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18270328

RESUMO

Activating mutations in tyrosine kinase (TK) genes (eg, FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high-throughput resequencing of the kinase domains of 26 TK genes (11 receptor TK; 15 cytoplasmic TK) expressed in most AML patients using genomic DNA from the bone marrow (tumor) and matched skin biopsy samples ("germline") from 94 patients with de novo AML; sequence variants were validated in an additional 94 AML tumor samples (14.3 million base pairs of sequence were obtained and analyzed). We identified known somatic mutations in FLT3, KIT, and JAK2 TK genes at the expected frequencies and found 4 novel somatic mutations, JAK1(V623A), JAK1(T478S), DDR1(A803V), and NTRK1(S677N), once each in 4 respective patients of 188 tested. We also identified novel germline sequence changes encoding amino acid substitutions (ie, nonsynonymous changes) in 14 TK genes, including TYK2, which had the largest number of nonsynonymous sequence variants (11 total detected). Additional studies will be required to define the roles that these somatic and germline TK gene variants play in AML pathogenesis.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Tirosina Quinases/genética , Análise Mutacional de DNA , Humanos
17.
Blood ; 111(9): 4809-12, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18160671

RESUMO

Somatic mutations in JAK2 are frequently found in myeloproliferative diseases, and gain-of-function JAK3 alleles have been identified in M7 acute myeloid leukemia (AML), but a role for JAK1 in AML has not been described. We screened the entire coding region of JAK1 by total exonic resequencing of bone marrow DNA samples from 94 patients with de novo AML. We identified 2 novel somatic mutations in highly conserved residues of the JAK1 gene (T478S, V623A), in 2 separate patients and confirmed these by resequencing germ line DNA samples from the same patients. Overexpression of mutant JAK1 did not transform primary murine cells in standard assays, but compared with wild-type JAK1, JAK1(T478S), and JAK1(V623A) expression was associated with increased STAT1 activation in response to type I interferon and activation of multiple downstream signaling pathways. This is the first report to demonstrate somatic JAK1 mutations in AML and suggests that JAK1 mutations may function as disease-modifying mutations in AML pathogenesis.


Assuntos
Janus Quinase 1/genética , Leucemia Mieloide Aguda/genética , Mutação , Animais , Análise Mutacional de DNA , Humanos , Leucemia Mieloide Aguda/etiologia , Camundongos , Mutação de Sentido Incorreto , Fator de Transcrição STAT1/metabolismo , Transdução Genética
18.
Blood ; 109(9): 3906-14, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17218386

RESUMO

Expression of the constitutively activated TEL/PDGFbetaR fusion protein is associated with the t(5;12)(q33;p13) chromosomal translocation found in a subset of patients with chronic myelomonocytic leukemia. TEL/PDGFbetaR activates multiple signal transduction pathways in cell-culture systems, and expression of the TEL-PDGFRB fusion gene induces myeloproliferative disease (MPD) in mice. We used gene-targeted mice to characterize the contribution of signal transducer and activator of transcription (Stat) and Src family genes to TEL-PDGFRB-mediated transformation in methylcellulose colony and murine bone marrow transduction/transplantation assays. Fetal liver hematopoietic stem and progenitor cells harboring targeted deletion of both Stat5a and Stat5b (Stat5ab(null/null)) genes were refractory to transformation by TEL-PDGFRB in methylcellulose colony assays. Notably, these cell populations were maintained in Stat5ab(null/null) fetal livers and succumbed to transformation by c-Myc. Surprisingly, targeted disruption of either Stat5a or Stat5b alone also impaired TEL-PDGFRB-mediated transformation. Survival of TPiGFP-->Stat5a(-/-) and TPiGFP-->Stat5a(+/-) mice was significantly prolonged, demonstrating significant sensitivity of TEL-PDGFRB-induced MPD to the dosage of Stat5a. TEL-PDGFRB-mediated MPD was incompletely penetrant in TPiGFP-->Stat5b(-/-) mice. In contrast, Src family kinases Lyn, Hck, and Fgr and the Stat family member Stat1 were dispensable for TEL-PDGFRB disease. Together, these data demonstrate that Stat5a and Stat5b are dose-limiting mediators of TEL-PDGFRB-induced myeloproliferation.


Assuntos
Dosagem de Genes , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Fusão Oncogênica/biossíntese , Proteínas Proto-Oncogênicas c-ets/biossíntese , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Proteínas Repressoras/biossíntese , Fator de Transcrição STAT5/biossíntese , Transdução de Sinais , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Knockout , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT5/deficiência , Transdução de Sinais/genética , Translocação Genética/genética , Ensaio Tumoral de Célula-Tronco , Quinases da Família src/metabolismo
19.
Mol Cell Biol ; 27(1): 267-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17060458

RESUMO

Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KIT(D816V) (hKIT(D816V))-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKIT(D816V) protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KIT(D816V) targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKIT(D816V) failed to induce disease in mice, while expression of either Golgi-localized HyKIT(D816V) or cytosol-localized, ectodomain-deleted KIT(D816V) uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KIT(D816V).


Assuntos
Membrana Celular/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Experimental/genética , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/fisiologia , Animais , Transplante de Medula Óssea , Proliferação de Células , Feminino , Complexo de Golgi/metabolismo , Humanos , Leucemia Experimental/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...